
Procedural Guard Placement for Stealth Games

Qihan Xu
School of Computer Science
McGill University, Montréal

Québec, Canada
qihan.xu@mail.mcgill.ca

Jonathan Tremblay
School of Computer Science
McGill University, Montréal

Québec, Canada
jtremblay@cs.mcgill.ca

Clark Verbrugge
School of Computer Science
McGill University, Montréal

Québec, Canada
clump@cs.mcgill.ca

ABSTRACT
Stealth game mechanics rely on a suitably difficult distribu-
tion of enemy observers, the placement of which is typically
a manual process. Here we investigate an automatic process
for placement of observer opponents. We use a Monte-Carlo
approach to generate randomized enemy positions and mo-
tions and combine this with a stealth path-planning and
analysis framework. This allows us to ensure feasibility of
the level design, and also measure relative difficulty. Initial
results using this process compare placement of both mo-
bile and static guards (rotating cameras), and let us explore
the impact on level difficulty produced by different kinds of
enemy observer agents.

Keywords
Computer games, stealth, procedural generation

1. INTRODUCTION
Stealth games require a player to traverse an area while

avoiding detection by enemy agents. This task is made more
or less difficult depending on the position and behaviours of
guards, cameras, and other level components that positively
or negatively affect a player’s ability to sneak. Ensuring a
stealth problem is both feasible and challenging, however,
is itself a challenging task, and automated approaches that
reduce the need for manual design and labour-intensive play-
testing have obvious value.

We present a simple approach to automating guard place-
ment in a stealth game context. Our design is based on first
decomposing a level-space into Voronoi regions, and then us-
ing that region geometry to define appropriate observer loca-
tions, selecting either basic patrol paths for mobile guards,
or static locations for rotational camera positioning. This
design is composed with an existing tool for analyzing the
existence of stealth paths. In this way we can automatically
verify feasibility, and evaluate the resulting level difficulty—
a level that admits more solutions is heuristically easier for
players to solve than one that admits just a few. The overall

process we describe is iterative and stochastic, allowing for
high variability in the generated output, scalable time com-
plexity, and easy integration into an iterative design process.

Specific contributions include:

• We describe an overall workflow along with basic al-
gorithms for mobile guard and camera placement in a
2D stealth level.

• By using a non-trivial, Unity 3D-based tool for stealth
path-finding, we demonstrate that our approach is ef-
fective, and show how choice of different observer agents
affects game difficulty.

2. BACKGROUND & RELATED WORK
Stealth games, such as Mark of the Ninja and the Metal

Gear Solid series, are distinguished from games in other gen-
res in that the main game mechanic is to traverse an area
undetected by various fixed and/or mobile entities. In such
games the potential for detection may be further compli-
cated and/or aided by the presence of different static ele-
ments such as shadows and other hiding places, noisy re-
gions, and so forth. Smith defines a level to be stealth
friendly if the in-game tools that reduce the probability of
detection are greater in some respect than the tools that
increase that probability [6]. The problem, however, is fun-
damentally one of avoiding being seen, and thus the task
of generating stealth levels combines problems in geometric
visibility along with procedural generation.

Visibility - A stealth problem is created by populating
a geometric space with enemy agents, either fixed in posi-
tion, such as (rotating) cameras, or mobile, such as guards,
each of which has some well-defined field of view (FOV).
Placement of such entities should still permit a solution to
exist of course, and we can view the core problem as one
of finding a distribution of n guards and m cameras such
that a path exists from start to goal that does not intersect
any enemy FOV. Previous work has investigated the prob-
lem of finding such a solution as a path-finding problem
[9]. The problem of creating the initial guard/camera place-
ment, however, is more closely related to visibility problems
in computational geometry. Klee’s “art gallery” problem, for
example, is defined by a polygon P of n vertices and edges,
wherein the task is to determine the minimum of number of
fixed points (360◦ cameras) in P that can see all of P [4].
Variations on this abstract problem have considered (con-
strained) mobile guards as well. Stealth games extend this
problem, introducing time/movement-models, as well as the
additional complexity of ensuring the placement is imper-



fect, admitting a solution, with some degree of challenge for
a human player. Erdem et al. presented a realistic applica-
tion of the “art gallery” problem where guards do not have
2π rotational and infinitely long view [3]. Using a discrete
world (grid-based) they optimally place cameras that can
cover every point of P in less than time t. They reduced the
problem to a Set Coverage Problem using a special case of
integer programming. They were able to reach near optimal
solutions mainly due to the grid representation.

Procedural Generation - Many generative or procedu-
rally generated content processes [1] for game levels share a
core system: a solution is proposed, evaluated, and based
on that evaluation the solution is either kept, evolved or
rejected [8]. For example, in the work of Togelius et al.,
they presented generative methods to evolve race tracks;
they measured the quality of a proposed track using neu-
ral network-based agents, and then evolved the track until
the desired criteria, such as the quality of the track, amount
of progress, variation in player progress, and difference be-
tween maximum and average speeds were met [7]. Other
processes for generating game artefacts exist such as fractal
noise generators for height-maps or textures, L-systems for
plants etc. as well as minimizing or maximizing functions
using integer/linear programming.

These approaches have also been applied to level design.
Shi and Crawfis presented a design tool that computes met-
rics on the optimal path a player may find to get through
a level, given obstacles and enemy distribution [5]. They
considered properties such as the minimum-damage cover,
longest path, and standard deviation of cover points. This
allowed them to change the distribution of obstacles in the
level in order to optimize the output. Dormans presents a
more holistic approach, describing a general tool that cre-
ates whole story, missions and levels [2]. This is based on
a grammar logic that produces levels of different shapes by
composing prefabricated environment pieces. Our work also
aims at level generation, although we are interested in the
specific problem of producing an enemy distribution in the
context of stealth gameplay.

3. METHOD
Our approach to the guard/camera placement problem is

based on application of a series of Monte-Carlo algorithms,
with the overall workflow as shown in Figure 1. In order
to place a moving guard or a rotational camera, we first
discretize the space into different regions. We then use those
regions within unique processes that populate either moving
guards or cameras. Note that while we present these as
distinct tasks, it is trivial to combine these steps and produce
a population of both moving guards and cameras.

Discretization and Regions - Placement of both mov-
ing guards and cameras are based on a coarse-grained region
decomposition. This ensures a good separation of our enti-
ties, and guides the actual definition of positions/movements.

In our prototype work, regions are created based on an
initial discretization of the space into (fine-grain) grid cells.
This allows us to use simple flood-fill algorithms in further
decomposition and analysis. Figure 2 shows the result of
this first step, with green cells indicating walkable areas and
red indicating obstacles.

Region decomposition is created based on an initial seed
location for each region. We randomly choose r non-obstacle
cells as starting points, separated by distance d. For flexi-

Input
Grid

decomposition

Voronoi
Regions

Determine
diameters

Maximize
coverage

Moving
guards

Cameras

Figure 1: Workflow and main stages.

Figure 2: Discretization of the input: walkable in
green, unwalkable in red. The green sphere is the
goal and blue the start position. The red cells
around obstacles appear offset due to the perspec-
tive view of the Unity client.

bility in camera/guard placement, and to also help ensure
a level remains solveable, we actually generate more regions
than necessary, using r = 2n − 1 regions for n guards or
cameras. From these initial points we then compute a dis-
crete, constrained Voronoi diagram, flooding out from our
centers to find the set of cells closer to each starting point
than to any other. Figure 3 shows an example of the result
for r = 5. Seed points are indicated by the small orange
dots, and the distinct regions by different colours.

Moving Guards - Generating arbitrary guard motions
is a very difficult task. In our work we restrict guards to
patrolling a straight line within a region, with FOVs always
facing forward. This is not a complex movement strategy,
but even simple straight line patrolling is representative of
guard movements found in multiple stealth genre games, in-
cluding Mark of the Ninja. It also constitutes a non-trivial
problem, where we need to ensure that patrol paths span the
bulk of a region, and so heuristically provide good coverage
of that area.

We begin by selecting the n biggest (in area) regions from
the r generated regions. Use of distinct regions avoids over-
lap in guard paths, and thus better coverage. Within each
of these n regions we then randomly pick two points until we
obtain two points visible to each other in the region. This
process is repeated, looking for two points with the largest



Figure 3: Discrete Voronoi regions constructed from
our r seeds.

separation, and so computing an approximate diameter for
the region. After some iterations, the maximally separated
pair of points found is then used to define the patrol path for
a guard assigned to that region. Figure 4 shows three guards
and their patrol paths based on the same regions shown in
Figure 3. Note that we also ensure no patrolling path is
looking initially at the start position, and that guards do
not continually observe the goal position.

Figure 4: Patrol paths for three moving guards.

Rotational Cameras - As we did for moving guards, we
impose specific constraints on camera behaviours to limit
the generational complexity. We assume cameras are usually
placed on walls, sweeping their FOV back and forth between
two angular extremes.

We again begin by choosing the n largest regions. We ran-
domly select a point (cell) along the boundary of the region
as a camera location; ideally, this is also an obstacle bound-
ary, although that is not possible in all cases. For each point,
we iterate through 8 possible directions (i.e., 45◦ intervals)
and keep track of the two longest lines of sight. This pro-
cess is repeated some number of times and the candidate
pair with the largest total line of sight is kept. The angle
formed between these two lines of sight, directed inside the
polygonal region, then defines the camera’s sweep. Again,
we ensure the player’s start point is not initially observed,
and the goal point not continually observed. Figure 5 shows
an example distribution of cameras and their rotational be-
haviours.

Interface - In order to use this generative process we
implemented a tool in Unity 3D. Figure 6 shows part of the

Figure 5: Three cameras and their rotational be-
haviours.

Figure 6: User interface in Unity 3D.

user interface used for specifying moving guards (camera
control is similar).

Through this interface we are able to specify algorithmic
parameters, such as the number of moving guards/cameras
and iteration thresholds, as well as visualize and control the
different algorithmic steps. This implementation design has
the further advantage that we are able to integrate it with
a Unity tool that computes and visualizes possible stealth
paths [9], an example of which is shown in figure 7. This
integration lets us analyze our generated output level, de-
termining feasibility and measuring level difficulty.

Figure 7: 40 paths generated by Tremblay et al.’s
stealth solver [9] for 2 guards and 1 camera .

4. EXPERIMENTAL RESULTS
In the previous section we presented a work-in-progress

workflow to generate a population of entities (guards and
cameras). The process does not show how changing param-



eters influences the game experience. This section discusses
preliminary results on measuring difficulty for different dis-
tributions of entities.

Intuitively, as the probability of finding a path decreases,
the difficulty of a player finding a solution increases. In
order to quantitatively measure the level difficulty, we thus
looked at the proportion of successful paths found by the
randomized solver for a fixed number of searches. Since
the solver uses a randomized search, this approximates the
likelihood of finding a path in a level.

Here, we used the scene presented in the previous section
for analysis. We ran 20 trials where each trial consisted of
20 agents sent to find a path from start to goal within one
unique generated distribution of entities. The relative num-
ber of agents that succeed then represents the probability
of finding a path. Averages and errors bars from the 20 tri-
als are plotted in Figure 8. We are interested in analysing
how difficulty scales with the number of entities, as well as
whether the choice of different entity types has any impact.

0 1 2 3 4 5 6 7 8
Number of entities

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Pr
o
b
a
b
ili
ty
o
f
fi
n
d
in
g
a
p
a
th

Guards
Cameras

Figure 8: Probability of finding a path as the num-
ber of entities increases.

Clearly, the number of moving guards and cameras does
influence the ratio of successful paths found. This change is
not necessarily linear, however, and despite the high variance
in this small study there is a notable increase in difficulty
between 3 and 4 cameras. This is likely correlated with
the level geometry, where an even distribution of 4 cameras
tends to either place cameras near the start or goal positions,
or more effectively block the paths between start and goal.

More striking in our results is a strong separation in dif-
ficulty between cameras and guards at the same number of
entities. This can be understood by considering the differ-
ent behaviours. Given the same FOV, a patrolling guard
will cover a larger area than a sweeping camera, and gener-
ally spend less time observing any given spot. Use of mobile
guards thus allows players to more easily find opportune
times to bypass the guard unseen.

This preliminary experiment shows that cameras and mov-
ing guards are meaningfully different and are useful for dif-
ferent design purposes. We hope to build on this, further
analyzing the distribution of guards and cameras on multi-
ple game levels in order to better understand how they can
be used to control level difficulty and structure the player
experience.

5. CONCLUSIONS AND FUTURE WORK
Understanding how guard/camera behaviours and place-

ment affects level design is an important step toward full pro-
cedural generation of stealth problems in games. Using our
techniques, we can already generate levels with parametrized
difficulty. We are especially pleased that despite the strong
constraints we rely on in this work, the generated levels ac-
tually look quite convincing, suggesting the approach can be
both practical and effective.

Our future work is expected to remove many of the imple-
mentation constraints in this prototype design, allowing for
more flexible geometric analyses, more complex guard/camera
behaviours, level structure analysis such as road map, and
use of other stealth-affecting game components. We also
hope to verify our approach to analysis through human study.

6. ACKNOWLEDGEMENTS
This research was supported by the Fonds de recherche

du Québec - Nature et technologies, and the Natural Sci-
ences and Engineering Research Council of Canada. Special
recognition to Pedro Andrade Torres and Nir Ricovich.

7. REFERENCES
[1] K. Compton, J. C. Osborn, and M. Mateas. Generative

methods. In The Fourth Procedural Content Generation
in Games workshop, PCG, 2013.

[2] J. Dormans. Adventures in level design: Generating
missions and spaces for action adventure games. In
Proceedings of the 2010 Workshop on Procedural
Content Generation in Games, PCGames ’10, pages
1:1–1:8, 2010.

[3] U. M. Erdem and S. Sclaroff. Automated camera layout
to satisfy task-specific and floor plan-specific coverage
requirements. Computer Vision and Image
Understanding, 103(3):156 – 169, 2006. Special issue on
Omnidirectional Vision and Camera Networks.

[4] J. O’Rourke. Art Gallery Theorems and Algorithms.
Oxford University Press, 1987.

[5] Y. Shi and R. Crawfis. Optimal cover placement
against static enemy positions. In Proceedings of the 8th
International Conference on Foundations of Digital
Games, FDG 2013, pages 109–116, 2013.

[6] R. Smith. Level-building for stealth gameplay - Game
Developer Conference.
http://www.roningamedeveloper.com/Materials/

RandySmith_GDC_2006.ppt, 2006.

[7] J. Togelius, R. De Nardi, and S. Lucas. Towards
automatic personalised content creation for racing
games. In Computational Intelligence and Games, CIG
2007, pages 252–259, 2007.

[8] J. Togelius, G. Yannakakis, K. Stanley, and C. Browne.
Search-based procedural content generation: A
taxonomy and survey. Computational Intelligence and
AI in Games, IEEE Transactions on, 3(3):172–186,
2011.

[9] J. Tremblay, P. A. Torres, N. Rikovitch, and
C. Verbrugge. An exploration tool for predicting
stealthy behaviour. In Proceedings of the 2013 AIIDE
Workshop on Artificial Intelligence in the Game Design
Process, IDP 2013, pages 34–40, 2013.


