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ABSTRACT
Games increasingly use input devices – such as Kinect, Leap, and
Move – that map the location of the player’s body into a virtual
space. Designers are often faced with two options: an intuitive,
direct mapping that is initially easier to learn but not suited for all
tasks, or an advanced mapping that is better suited to carrying out
tasks but harder to learn. In this paper we propose a method for
achieving the best of both worlds: user behavior transformation.
Rather than a single static mapping, our method uses a dynamic in-
put mapping that starts out with a direct mapping but changes over
time to a more advanced mapping that is more suited to the types
of tasks the player needs to perform. As the mapping changes, the
player automatically transforms their behavior to take advantage of
the new input space. In this way the mapping can allow for more
advanced interactions the designer would like, while still being in-
tuitive. We validate this approach with a Kinect based interface for
a game with a complex task: protein folding in Foldit. The ini-
tial direct mapping from the player’s hand position changes to a
mapping that reduces occlusions caused by overlapping hands. In a
user study, the dynamic mapping compares favorably to two static
mappings with respect to task completion times.

Categories and Subject Descriptors
H5.2 [Information interfaces and presentation]: User Interfaces.
- Graphical user interfaces.

General Terms
Design, Human Factors

Keywords
Foldit; Kinect; 3D object manipulation interface; detectability; us-
ability; intuitiveness; occlusion; two-handed interaction; vision-
based; single field-of-view; tracking system.

1. INTRODUCTION

With an increasing number of input devices that map the player’s
position from the real world into the virtual one – devices such
as Microsoft’s Kinect, Leap Motion’s Leap, Playstation’s Move
or Nintendo’s Wii Remotes – players have the possibility of us-
ing their bodies, hands, and fingers to more directly interact with
games. Seeing the potential of these devices, much attention has
been paid to creating novel interfaces and interactions that are more
intuitive and effective to use. The current interface design trend is
to simulate simple, high-level gesture based manipulations. For
example, users can swipe to rotate objects, or pinch to zoom the
camera. However, designers may desire players to access more
complex, detailed manipulations of the virtual world; these types
of interactions are still relatively rare.

We propose a method for creating mapped interfaces capable of
supporting a wider range of tasks while maintaining the desirable
intuitiveness of these types of interfaces: user behavior transfor-
mation. With this approach, the mapping from the player’s inputs
(location of the player’s body) to the representation of those inputs
in the virtual world (location of the player’s avatar) is dynamic and
changes over time. Initially, the mapping is direct so as to be as
intuitive as possible. Over time, the mapping changes to a map-
ping that is less direct but better suited to the types of tasks the
designer intends. As the mapping between the real world and the
virtual one changes, the player changes their behavior to use the
new mapping. We refer to this as "user behavior transformation"
as it happens intuitively – no explicit training is necessary. Rather
than explaining how the interface works through a tutorial or on-
screen prompts, the player changes their inputs to compensate as
the mapping changes.

In this paper, we explore the potential of user behavior trans-
formation by evaluating a dynamically mapped two-handed Kinect
interface for the protein folding game Foldit. One of the limita-
tions of Kinect is robustness dealing with occlusions. As a single
field-of-view visual tracking device, its tracking capability is heav-
ily dependent on the visibility of its tracked subject. When tracking
both hands simultaneusly, fidelity is reduced when the hands over-
lap or cross, as one of the hands is occluded and hidden from the
tracking system. As shown in Figure 1, the interface functionality
will be ruined by certain common gestures due to tracking failure.
Therefore, it is more constrained when trying to track multiple ob-
jects simultaneously.

A direct mapping from hand locations in the real world to their
locations in the virtual one will suffer from the adverse effect of
occlusion if the player needs to cross their hands. An indirect map-
ping that avoids this occlusion may cause the player initial confu-
sion as they do not see their virtual hands where they expect them.

With our new dynamic mapping scheme, we hypothesize that it
will enable users to move both of their hands as desired, both phys-



ically and on screen, while avoiding occlusions, and that this new
mapping will be as intuitive as using a direct mapping, but more
effective. In the following section, we will describe our the chal-
lenges posed by using two-handed interaction for protein folding
and how these informed the specific mapping we used. With re-
spect to each challenge, we will then illustrate how we designed the
systems and how we tested our hypotheses. In the results section,
we will show that our scheme can improve the player performance
in a variety of tasks regardless of any possible learning effects.

2. CHALLENGES
Designing an intuitive 3D two-handed interface using single

field-of-view tracking device introduces many distinct challenges.
We summarize those challenges into the following four categories.

Figure 1: The skeleton tracked by Kinect. Colored areas indicate
chance of occlusion occurrence. Red means high, green means low,
and yellow means hard to reach intuitively by humans.

2.1 Occlusion and Estimation Noise from the
Sensor

The occlusion noise is specific to field-of-view tracking devices.
This type of noise results from the tracking estimation error caused
by occlusion or near-occlusion. Occlusion may happen in different
occasions. Take Kinect for example, occlusion happens between
the joints of one player, or between multiple players. Because of
its nature, this kind of noise is spatial-dependent. Its possibility
of occurrence increases when two tracked parts become closer to
each other. In Figure 1, we mark the high-probability-occlusion
area in red, low-probability-occlusion area in green, and the area
hard for humans to reach naturally is in yellow. This is coherent
with the findings of Polacek et al. [7]. Other than the marked re-
gion, new high-probability-occlusion region can happen when two
tracked objects are close such as when two hands are close to each
other. The amplitude of this noise is peak-like when it occurs: it
acts like a value interchange between the affected coordinates so
players will find the controllability of the tracked parts are jumping
or losing track.

This disruptive tracking can severely degrade the overall track-
ing performance and prohibit the player from folding the protein
structure to desired 3D location. It interrupts and deteriorates any
desired motion: the player has to recover from the erratic move and
try again to make it right. The error may still affect the player’s fol-
lowing attempts as long as he/she still introduces similar occlusion
on the tracked parts. Take the normal folding gesture as an exam-
ple, it is intuitive for humans to fold things right in front of their
bodies. Unfortunately, as indicated in Figure 1, this is not an ideal
region for detection. The occlusion noise can reoccur very easily
because there are potentially eight tracked joints in that region that
can occlude one another. This will greatly reduce efficiency and
lead to fatigue quickly and possibly frustration.

2.2 Precise Positioning

As we mentioned earlier, the reason why people want to use both
hands to solve a problem is because the problem is complicated and
requires two hands to deal with. With both hands people expect to
gain better controllability over the object. Here is a short expla-
nation of why protein folding is a representative task for precise
manipulation as shown in Figure 2.

(a) Initial structure (b) Optimized (a)

(c) Minor tweak on (a) (d) Optimized (c)

Figure 2: We use protein folding as a representative precise two-
handed manipulation task. Precise manipulation is required in
Foldit because optimization can lead to very different results with
subtle differences in starting points.

A protein is a highly flexible long chain of amino acids. Each
amino acid has its own degrees of freedom, thus the overall struc-
ture can possess extremely high inner degrees of freedom. A com-
mon protein can easily have hundreds of degrees of freedom.

As a result of this complexity, any minor difference in the struc-
ture might prohibit the structure from becoming the correct solu-
tion. In addition, the best compact conformation can vary subtly
compared to other less ideal structures. Hence, to fold a protein
correctly relies heavily on both 3D understanding and precise ma-
nipulation skill. Protein folders must choose the correct spot to
work on and the exact spot to place the protein. To prove the ef-
fectiveness of our proposed scheme, we want to see if users can
position their hands precisely on the protein structure.

2.3 User Understanding of 3D Two-handed
Mapping

The mouse has been the major navigating interface between hu-
man and computer for decades, and people are very skilled in using
a mouse and are very familiar with its 2D mapping to the screen.
This can make new 3D interfaces difficult for people to learn be-
cause it is very different from the concept of a mouse. Some re-
search also echoes that people often find it inherently difficult to
understand 3D space mappings and to perform actions in free space
[2].

In addition, two-handed interactions may make the situation
more complicated. When users are busy learning the new mapping,
they also need to pay attention to keep track with both of their hands
simultaneously. If users cannot learn to see the correct connection
from their hands to the respective on-screen counterparts, they will
get confused. When they are confused, they are more likely to use
the wrong hand, and make the wrong move. This results in more
correction steps which reduces the overall effectiveness.

The challenge for our scheme is for users to easily adopt the
new mapping and intuitively understand which cursor belongs to
which hand so that when they are using the device, they forget
about how their real hands are positioned. For example, people



nowadays don’t look at their hands to move the mouse cursor to
the right position, instead, they only keep track of the cursor on the
screen and move their hands accordingly. We believe that our inter-
face should have similar traits, so that people will only be staring at
the screen while using it. However, how much training is sufficient
for people to get to this point is unknown.

2.4 Intuitive Control with Less Instruction
The last challenge we face is how to make our interface easy to

learn and intuitive to control. One side of the challenge is how we
transfer the knowledge of using the new two-handed interface so
that a novice can learn to use the interface like an expert in a short
amount of time. The other side is how to teach people to use the
interface as we want them to use it. The question that is challenging
to answer is how much tutorial or instruction is required to achieve
this and what exactly should the instruction address.

3. RELATED LITERATURE
While there are a plenty of articles on hand tracking research, we

only include those that focus on the mapping scheme design.
Malik et al. [5] designed an asymmetric two-handed interaction

study. However, their work put more focus on describing the in-
teraction with less evaluation so we are not able to determine its
effectiveness. Owen et al. [6] provided an analysis of the effective-
ness between one-handed and two-handed scenarios. They tested
three mappings to map either one or two mouse cursors onto the
screen. However, the authors admitted that their two-handed task
was not very complete, and they were unable to find significant dif-
ference between two of their proposed two-handed mappings. In
contrast, our result shows great difference in effectiveness between
different mappings.

With proliferation of single field-of-view 3D tracking systems
like Microsoft Kinect, Sony Move & EyeToy, Nintendo Wii, or
LeapMotion accessible to the public, some work is really con-
cerned with how to create a two-handed scheme using such devices.

Polacek et al. [7] proposed a user interface that moves on the
screen along with the user’s motion. They also provide a few ob-
servations about the comfortable area for a humanâĂŹs hand to
interact with Kinect. Our work brings more detailed analysis on
two-handed interaction, and part of our design is consistent with
their observations.

Song et al. [8] proposed a handle bar metaphor for 3D virtual
object manipulation using Kinect. Their system may potentially
introduce more fatigue by using both hands all the time. The trade-
off is gaining more controllability of the object. However, from
their targeting task, it is hard to determine whether this kind of in-
teraction can tackle realistic and complex manipulation similar to
protein folding. Wang et al. [9] developed a vision-based system to
track up to six degrees of freedom (DOF) of each hand. Song and
Wang’s work both use bimanual interaction to increase the con-
trollability. In addition, the KinectFusion project [4] demonstrated
its effectiveness of reconstructing the 3D scene by the point cloud
from the depth map. This project also showed a way to do robust
hand/object orientation estimation and tracking if the object is not
too far from the Kinect camera and if the system can have some
hardware acceleration support. However, the robustness of those
systems are dominated by how visible the tracked hands are. With
only direct coordinates mapping, those systems are vulnerable to
occlusions. In the latter work of Wang et al. [1], they even used
more than one Kinect camera in order to alleviate the issue.

Using Kinect, Hilliges et al.[3] made a holo-projection interac-
tive system so people can interact directly with the device with less
effort for users to imagine the 3D-3D mapping. However, the re-

quired extra hardware is not easily available to the public.

4. FRAMEWORK
In this section we describe the three mappings we evaluated: two

static mapping schemes and our dynamic mapping scheme.
Absolute (ABS) - Static mapping scheme that maps a fixed space

in the real world directly into the virtual one. Relative (REL)
- Static mapping scheme that maps a relative space around each
arm into the virtual world. Adaptive (ADA) - Dynamic mapping
scheme that changes a per-hand mapping between real and virtual
worlds over time.

4.1 Reduce Occlusion Noise by Coordinates
Mapping

The first part of our proposed scheme focuses on solving the oc-
clusion noise problem in the single field-of-view tracking scenario.

4.1.1 Absolute Mapping Scheme (ABS)
Absolute mapping, shown as in Figure 3(a), maps the coordi-

nates in the real world to the screen directly. Absolute mapping is
the most common and straightforward mapping scheme and is used
in most tracking interfaces. This kind of mapping suffers from oc-
clusion because its interaction space allows tracked objects to oc-
clude one another, such as in Figure 1 and Figure 3(a). Depending
on the mapping boundaries, this mapping can also be hard for the
user to reach the screen corners. The user may even have to walk
around in order to do so.

Data:
Tracked human joints of head, spline (body center), hands,
shoulders, hip. Each joint has x, y, and z coordinates. We
assume that the length of the outspread arms is equal to the
height of a man and the maximum width of the shoulders is a
quarter of the height of a man. Note that the unit distance D is
correlated to user height, so the mapping function can be
adaptive to people with different height.
H - height of the user in camera view
D ' 1/2 ∗H - unit distance, obtained from Head.y −Hip.y
Dh - distance between both hands
BW - bounding box width in camera view
BH - bounding box height in camera view
(Bx, By) - bounding box center in camera view
SW - screen width

Absolute Mapping Bounding Box:
Bx = SW /2
By = Head.y − 1/2 ∗BH

BW = SW

BH = 3/5 ∗D

Algorithm 1: Algorithm 1: Absolute mapping function.

However, this mapping is intuitive to human because the hands’
relative positions are identical in physical space and on the display.
Thus, the user can establish the connection between the physical
hand and the on-screen counterpart directly (as shown in Figure
4(a)). We treat this mapping as the baseline mapping scheme for
our comparison.

4.1.2 Relative Mapping Scheme (REL)
Bearing the idea of minimizing the shared space (high occlusion

probability) region, it is reasonable to design a special mapping
which is relative to each hand separately. We called this Relative



mapping scheme. In this mapping scheme, a hand’s own bound-
ing box that maps coordinates into the screen space will be created
near that hand, shown as Figure 3(b). In Figure 3(b), the left hand
owns the orange mapping bounding box and the right hand owns
the green mapping bounding box.

(a) Absolute mapping (b) Relative mapping

Figure 3: Different hand coordinate mapping schemes. (a) Abso-
lute mapping can easily have occlusion near the red region due to
shared space among tracked objects. (b) Relative mapping elim-
inates the shared space while retaining the freedom for hands to
move.

(a) Absolute mapping

(b) Relative mapping

(c) Adaptive mapping

Figure 4: Different hand coordinate mapping schemes and its ef-
fect. (a) Absolute mapping has no mapping confusion. (b) Rela-
tive mapping may have mapping confusion when hands enter the
scene. (c) Adaptive mapping removes initial mapping confusion
(solid boxes) and will adaptively transform back to Relative map-
ping (dotted boxes).

The bounding box is hand-centric, with position fixed with its
owner’s respective shoulder. Its size is determined as follows:
height is from top of the user’s head to chest, width is from the side
of the ear extending a distance of the length between the shoulders,
and depth is from chest extending a distance of the length between
the shoulders. The depth mapping is curved and make the bound-
ing box’s shape look like a portion of a thick sphere shell. This is to
accommodate the depth with respect to how much a human’s hand
can stretch.

Based on the bounding box design, the user hand can avoid
the high occlusion region in Figure 1 and stay in the good region
for tracking devices to detect. This mapping can hugely decrease
the chance of self occlusion (occlusion between hand to hand or
body/head to hand) and increase successful detections. Relative
mapping scheme greatly eliminates the occurrence of occlusions.

Also based on the bounding box design, hands usually move near
their respective shoulders, so they can move with less efforts. In

addition, the coordinates inside each bounding box represents the
coordinates of the whole screen, so the user can move each indi-
vidual hand freely on screen without making both hands touched
or crossed. This means the distance for hand to move is also re-
duced. These traits can reduce the fatigue during operation.

Relative Mapping Bounding Box: (one side)
Bx = Spline.x+ 1/3 ∗D + 1/2 ∗D
By = Head.y − 1/2 ∗BH

BW = D
BH = 3/5 ∗D

Algorithm 2: Algorithm 2: Relative mapping function.

However, we expect this special mapping will create new prob-
lems. Since Relative mapping gives each hand the freedom to navi-
gate the whole space without touching or crossing the other, some-
times the hand mapping is not intuitive. For example, in Figure
4(b) and 10, the user’s hands are reversed on screen but not physi-
cally. This problem is more severe when the users just start raising
their hands to enter the scene (Figure 11(b)). If users first see that
their hands appear to be reversed on screen, it’s very hard for them
to establish the correct link between their hands and the hands on-
screen.

Data:
(BTx, BT y) - targeted bounding box center in camera view
SW - screen width in camera view
Hd - hand displacement from last frame to the current frame
λ - bounding box morphing rate for Adaptive Mapping
Adaptive Mapping Bounding Box: (one side)
BTx = Spline.x+ 1/3 ∗D + 1/2 ∗D
BT y = Head.y − 1/2 ∗BH

Function Initialization():
(Bx, By) = (Hand.x,Hand.y) when the user first put the
hand into the camera view for one second.
BH = 3/5 ∗D
Function Update():
while (Bx, By) 6= (BTx,BT y) do

if (Hand− (BTx,BT y)) ·Hd > 0 then
Bx = Bx + λHd.x; By = By + λHd.y

end
if Dh ≤ D then

BW = (Dh/2)/2/3
else

BW = D
end

end

Algorithm 3: Algorithm 3: Adaptive mapping function.

4.2 Adaptive Mapping Scheme (ADA)
From Relative mapping, we saw the main problem is the confu-

sion of the initial mapping. In order to reach the full potential of
this mapping, we need to eliminate the initial mapping confusion.

To achieve this, we made a mapping scheme that makes sure
that every time the userâĂŹs hands enter the scene, the relation-
ship between the hands will be the same both physically and on the
screen. Our approach is creating new bounding boxes every time
the user raises his/her hands, shown as the solid boxes in Figure
4(c). Different from the bounding boxes of Relative mapping, the
bounding boxes now are not fixed with respective shoulder posi-
tion. Instead, they will appear with respect to where the hands are



first recognized by the tracking system. This approach can guaran-
tee the initial mapping of hands will be in the correct relationship.

(a) Adaptive mapping initializes.

(b) Adaptive mapping after four horizontal moves.

Figure 5: Example of Adaptive mapping seamlessly moves user be-
havior in our desired space without any instruction or intervention.
Note the mapping bounding boxes (green boxes) and the user’s
physical hand position are changed after a few horizontal moves
in that extent but the on-screen hands retains the positions and rel-
ative motions.

Although this new bounding box design can solve the initial
mapping problem, the bounding boxes have less optimal shapes
and locations. Note that in Figure 4(c), the bounding boxes are
narrower compared to the Relative ones shown in Figure 4(b), so
the mapping will be more sensitive, resulting in a greater mapping
ratio to the screen. The bounding boxes now may cover some high-
probability-occlusion regions and may cause more tracking error.

In order to eliminate the initial mapping confusion and simul-
taneously have the effectiveness from Relative mapping, we de-
signed Adaptive Mapping to retain all the advantages. In Adaptive
mapping, the initial mapping is respective to the user hand’s ini-
tial position. However, when the user moves his/her hands, the
mapping bounding box will adaptively and seamlessly change its
shape and location. The change happens silently and keeps the
user’s on-screen hand motion relatively the same as his/her phys-
ical hand motion. This mapping tricks the user by morphing the
bounding box with a comparatively slower speed when the user’s
hand is moving toward the correct mapping space. The morphing
speed is set as a portion of the physical hand speed to keep the
relative motion on screen. In a few accumulative motions (usu-
ally within 5 seconds) the mapping will become identical to Rela-
tive mapping. This is shown in Figure 5. Note that the Adaptive
mapping is not a transition or combination of Absolute mapping
and Relative mapping. The figure demonstrates this: if the user
moves both of his hands back and forth along the arrows. After
repeating four times of that motion and back to the original posi-
tion on screen, the bounding boxes (shown in green solid boxes)
move from high-probability-occlusion regions to occlusion-free,
and good-for-tracking regions.

5. EXPERIMENT

The following experiment was designed to investigate whether
our proposed scheme is intuitive and effective. The chosen tasks are
the ones in which occlusion easily occurs and which make single
field-of-view tracking systems hard to use.

Figure 6: Distribution of subjects randomly assigned to the 36 dif-
ferent task-condition combinations possible. Cells used for experi-
ment is in orange.

5.1 Experimental Design
Our design was a 3 x 3 within subjects design. Each subject

performed 3 tasks using each of the 3 mapping schemes.

(a) Split task

(b) Dock task

(c) Swap task

Figure 7: (a) Split (b) Dock (c) Swap task for each condition iter-
ation. The steps of each task is marked on the images. Users can
complete each step symmetrically or asymmetrically.

Each subject tried all three mapping conditions–absolute, rela-
tive, and adaptive–in random order, counterbalancing to reduce the
chances of possible ordering or learning effect. In each condition,
players do all three tasks, also in random order. In addition, in or-
der to observe whether learning effects influence the performance
of each mapping scheme, we intentionally added a fourth iteration
of the first mapping scheme condition each player experienced to
let the player revisit the first mapping condition again. Every player
experienced four sessions in total using the three different mapping
schemes.

Here are the three tasks we used in our experiment, these tasks
are Split, Dock, and Swap as shown in Figure 7. Each of the task
simulates a common object manipulation in the real world:

• Split: spreads the object into two from a center



Figure 8: Example user hand trace under Dock task. The two trian-
gles are the starting hand positions of the task and the crosses are
the end positions. Green/yellow circles show the ends of the struc-
ture. Blue/cyan line is the trace of left hand and the magenta/red
line is the right hand trace. The color difference is to show the trace
in the first/last half duration. High curvature turning points of the
traces are shown in green/red dots.

• Dock: puts two parts closely together.

• Swap: exchanges the position between two parts.

Subjects were asked to perform each task before we actually
record the time, so that we can make sure all subjects understood
the task goals and were able to perform correctly. Within each task
we timed three separate intervals. The first interval started when
the player raised his/her hands and ended when the player’s hands
reached step one. The second interval started when the player’s
hands reached step one until they completed step two. Users can
complete each step with symmetrical or asymmetrical hand move-
ments. We also examined the total time and let the player try four
times in each task, taking the best result in each step.

Since there are six permutations of tasks ordering, and six per-
mutations of condition ordering, there are 36 different task-condition
combinations. Each subject was randomly assigned one of the 36
combinations. Our goal was to have an even number of subjects
distributed over each condition (row) and task (column) combina-
tion, shown in Figure 6. There were 3 subjects per condition each
with different task ordering. There were 6 subjects who experi-
enced a certain condition sequence (e.g. 6 people take condition 1
as the first condition).

Figure 9: Result comparison for different mappings. The result
is the average hand trajectory of the test subjects. In terms of low
occlusion, Adaptive mapping is comparative to Relative mapping to
have the lowest. Furthermore, the Adaptive mapping also has the
advantage of eliminating the hand swapping issue in the Relative
mapping and gains some average time reduction to perform a task.

In this experiment, we measured the minimum time for each step
per task per condition. For our analysis we used the best times of
all conditions, including the repeated condition (note that the first
condition repeated after the completion of the other two conditions)
to further investigate the learning effect to see how much it will
impact the performance among all three mapping schemes. For
example, if a user did the condition in the following sequence: Rel-
ative, Adaptive, Absolute, and the Relative, the best time in each

step of Relative mapping is chosen from the best one in those two
iterations.

Table 1: Mapping Condition by Task: Three-way Comparisons
of Minimum Time to Complete Task in Seconds (Friedman
Test)

Red bold face ones are the minimum time spent per task
among three conditions

Task Step Condi-
tion

Mean Stdev. Min Max Mean
Rank

Swap Step 1 ABS 2.42 0.865 1.3 4.4 1.78
Chi-Square = 18.353 REL 2.81 0.970 1.2 5.3 2.78
p < .001 ADA 1.87 0.451 1.1 2.5 1.44
Step 2 ABS 31.88 38.924 2.7 99.0 3.00
Chi-Square = 28.800 REL 3.09 0.860 1.9 4.5 1.67
p < .001 ADA 2.78 0.497 2.0 3.6 1.33
Total ABS 34.45 38.715 4.1 101.3 3.00
Chi-Square = 28.778 REL 5.97 1.691 3.2 9.8 1.72
p < .001 ADA 4.67 0.733 3.4 6.0 1.28

Dock Step 1 ABS 2.38 0.674 1.4 3.7 2.19
Chi-Square = 18.464 REL 2.68 0.856 1.7 5.0 2.58
p < .001 ADA 1.64 0.345 1.1 2.5 1.22
Step 2 ABS 11.86 21.981 2.8 99.0 3.00
Chi-Square = 29.662 REL 2.49 0.560 1.5 3.5 1.75
p < .001 ADA 2.02 0.367 1.5 2.9 1.25
Total ABS 14.49 22.008 4.2 101.8 3.00
Chi-Square = 36.000 REL 5.18 1.224 3.3 7.5 2.00
p < .001 ADA 3.68 0.500 3.0 4.9 1.00

Split Step 1 ABS 7.05 8.461 2.6 37.6 2.56
Chi-Square = 21.778 REL 3.77 1.309 2.3 6.7 2.33
p < .001 ADA 2.46 0.703 1.2 4.0 1.11
Step 2 ABS 3.16 0.643 2.0 4.9 2.64
Chi-Square = 19.391 REL 2.68 0.526 1.5 3.6 2.14
p < .001 ADA 2.24 0.542 1.2 3.5 1.22
Total ABS 10.41 8.540 5.7 41.5 2.72
Chi-Square = 26.290 REL 6.48 1.665 3.8 10.1 2.19
p < .001 ADA 4.71 0.955 2.4 6.4 1.08

6. RESULTS
We collected player data from 18 subjects, most of which were

novices at using Kinect, and of playing Foldit. An evaluation
of the Shapiro-Wilkes Test of Normality indicated that our data
were not normally distributed, thus, we used non-parametric sta-
tistical methods to analyze our data. The Friedman Test, a non-
parametric equivalent to the repeated measures analysis of vari-
ance was used to analyze our data, along with subsequent Wilcoxon
Rank Sum Tests to identify statistically significant 2-way compar-
isons. Our analysis of the overall total time for completing our three
tasks shows evidence to statistically support that our proposed two-
handed mapping scheme out-performed the other schemes, with
all but 3 of our 2-way comparisons also showing statistical signif-
icance even when including the subject’s best time on the repeated
condition and a small sample size.

6.1 Interpreting the Results
Here is a list of our hypotheses of the three different mapping

schemes:

H1. Occlusion-reduction: Absolute mapping should have no dif-
ferences in time as compared to the other mapping scheme
when there is no occlusion or near-occlusion. So the step
one of the Swap and the Dock task, and the step two of the
Split task should work normally. However, we should see it
will take participants longer to complete a task in the rest.

H2. Intuitiveness: Adaptive mapping removes the initial mapping
confusion that Relative mapping has, so there should be less
time spent in step one of each task to correct the on-screen
hand initialization.

H3. Impact of learning: Because Adaptive mapping becomes Rel-
ative mapping after users moves their hands a few times, if



users are learning over time, the latter condition should have
the advantage in step two time results.

H4. Intuitiveness: Adaptive mapping will have the best times in
all tasks because it can shift the user’s behavior to a place
better for detection and require less effort to play.

6.1.1 Time Analysis

Table 2: Mapping Condition by Task: Two-way Comparisons
of Minimum Time to Complete Task in Seconds (Wilcoxon
Rank Sums Test)

NS (Not Significant), * (p < .05), ** (p < .01)

Swap
Step

1

Swap
Step

2

Swap
Total

Dock
Step

1

Dock
Step

2

Dock
Total

Split
Step

1

Split
Step

2

Split
Total

ABS Vs.
REL

* ** ** NS ** ** NS * **

REL Vs.
ADA

* NS ** ** ** ** ** * **

ABS Vs.
ADA

* ** ** ** ** ** ** * **

In Table 1, we showed the minimum time to complete each task
under different conditions, and the minimum time in each cate-
gory is marked in red boldface. The data supports our hypotheses
that the proposed Adaptive mapping scheme outperforms other two
schemes, and the trend of the data is also consistent with the fea-
tures we predicted. We see the difference between Relative map-
ping and Adaptive mapping is smaller in step two comparing to
step one, and the Absolute mapping is not an effective mapping
scheme in high-probability occlusion situations. The data supports
our hypotheses H1 and H2.

Figure 10: Relative mapping can be counter-intuitive. Hands are
reversed on screen but not physically. If the user puts his phys-
ical hands closer together, this will result in the on-screen hands
spreading further apart. To correct the initial mapping confusion is
counter-intuitive.

Since we included the best time result from the additional re-
peated condition test to get more robust results over all conditions,
the data overwhelmingly supports the successfulness of the Adap-
tive mapping because even when users are given the opportunity
to learn the other mappings with an additional session, the perfor-
mance is still not on par with the Adaptive mapping. This also im-
plies that our proposed Adaptive mapping is easily learned in one
short session. This finding rejects our hypothesis H3, but shows
that the learning effect will not dominate the effectiveness of the
Adaptive mapping scheme.

Table 2 demonstrates the statistical significance of our subse-
quent analysis of our two-way comparisons. Each of our 3-way
comparison were statistically significant as shown in Table 1, and
most of our 2-way comparisons (see Table 2) also show statistical
significance. The second step of the Swap task between Relative
mapping and Adaptive mapping is not statistically significant, but
this is actually inline with our prediction as they are designed to be

very similar to each other after users take a few moves in the first
step. However, interestingly, in the other cases Adaptive mapping
all outperform the Relative mapping with statistically significant
differences. This suggests that the users migrated their hands into
the better working zone and achieved higher effectiveness. This
supports our hypothesis H4.

The other non-statistically significant differences are step one of
the Dock and Split task between Absolute mapping and Relative
mapping conditions. This might be a result of our small sample
size, but the data overwhelmingly shows that the subjects were
most effective at completing the tasks in the Adaptive condition.

6.1.2 Hand Trajectory Analysis
We also examined the hand trajectories in order to support our

claim. We first want to see if the new mapping scheme helps bring
down the jittery trajectory by reducing occlusion error. An example
trajectory of a given task is shown in Figure 8. Since where occlu-
sion occurs will cause the trajectory to have undesired jittery move-
ments, the more random jitters along the trajectory implies more
occurrence of occlusion. To identify the random jitters, we use
Ramer-Douglas-Peucker algorithm to simplify the trajectory with
ε = 10 and detect short and high curvature turns. We marked iden-
tified locations in red or green dots as shown in Figure 8. In Figure
11, we can see that the jitters are successfully identified and those
identified jitters are much more under Absolute mapping. Average
jitter rate is summarized in Figure 9.

6.2 Observations
When users are using the Relative mapping scheme, most users

tend to move their physical hands closer in order to bring the on-
screen hands together, like the red-arrow example in Figure 10.
However, this results in their hands getting out of the screen and
they have no idea how to get their hands back again. The ways to
recover from this mapping oddity are by spreading the hands fur-
ther (blue arrows) or raising the hand/enter the scene with a much
wider hand spread, but these are very counter intuitive to users.

Such confusion may also make the user panic, resulting in more
erratic movements. For example, some users attempted to stretch
their hands toward the Kinect camera in order to get their hands
back into the screen because this is what they usually do with the
Kinect camera. This movement fails because it takes their hands
out of the effective detection area and moves their virtual hands
from the screen. If incorrect detection introduces any faulty moves,
users have to take more moves to correct the error. This hugely
decreases the effectiveness of the interface and increases user fa-
tigue and frustration. Note that in Figure 11 the X-Z views that the
user under Absolute mapping moves more in the Z direction when
trying to regain control over jittery movements whereas the Adap-
tive mapping guides the user to work in the desired area and less Z
direction movement.

However, the Adaptive mapping scheme totally eliminates such
artifacts in the Relative mapping scheme. This is because Adap-
tive mapping retains the relative hand motion when morphing the
mapping bounding box, we observed that users feel this happens
intuitively. However, for most of the time, users do not even no-
tice the change. Similar to Figure 5 demonstrates, we observed that
users move their hands from high-probability-occlusion regions to
occlusion-free, good-for-tracking, and hand-relaxed regions. It is
even more amazing that all of these are achieved without any in-
struction: users of Adaptive mapping seamlessly shift their hands
to the exact location we want them to work. Adaptive mapping
transforms user behavior elegantly.

In short, our proposed Adaptive mapping achieves the following



(a) Absolute mapping trace X-Y view (left) and X-Z view (right)

(b) Relative mapping trace X-Y view (left) and X-Z view (right)

(c) Adaptive mapping trace X-Y view (left) and X-Z view (right)

Figure 11: Example user hand traces on screen for the Swap task
under different mappings. Absolute mapping: the hand trace shows
that tremendous trajectory jitter is caused from occlusion. Relative
mapping: the hand trace is smooth because of the elimination of
occlusion. However, the starting points of both hands are swapped
so that the user has to learn how to recover from swapped hands.
Adaptive mapping helps the user to perform a very direct and short
traversing path.

goals:

• Our proposed scheme is effective in reducing occlusion arti-
facts and increases effectiveness of detection.

• Our proposed scheme is intuitive to use and easy to learn,
and leads users to move their hands to the most effective area
effortlessly.

7. CONCLUSION & FUTURE WORK
In this paper we have presented an approach to user behavior

transformation based on a two-handed Kinect interface with a dy-
namic input mapping. The dynamic mapping improved task com-
pletion times as compared to two static mappings in a user study.
This approach produced an interface that was both intuitive and al-
lowed the types of interactions the designer desired by avoiding oc-
clusions. The player’s behaviors were shifted to the area we wanted
elegantly without a single explanation or instruction; it can be an
alternative to tutorials or prompts that may be needed to explain
how a static mapping works.

The Kinect system presented can be applied to other precise two-
handed interactions tracked from a single field-of-view. In addi-
tion, we believe that the concept of user behavior transformation
can have broad applications for interfaces. We are interested in ex-
amining how this approach can be applied to other interfaces, such
as full-body Kinect or finger-based Leap interfaces.

Since the dynamic mapping scheme can guide people to work in
a certain space, we might be able to generalize our scheme to guide

multiple players to work in the same workspace at proper locations
effortlessly. We also want to explore the possibility to apply this
dynamic mapping in other aspects, such as reducing fatigue. The
system could also adapt to specific users. It could automatically
recognize input configurations of the player’s body that cause trou-
ble (such as occlusions) and adjusting the mapping to avoid those
configurations. Or, it could recognize once a player has learned
the less direct mapping (after using the system for some time) and
transform to it right away.

As virtual reality systems become more pervasive, new possi-
bilities for dynamic mappings may emerge: if the player cannot
see their body directly, new transformations may be possible solely
based on the user’s sense of proprioception.
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