
A Web-Based Editor for Multiplayer Choice Games

Ian Holmes
Department of Bioengineering

University of California
California, Berkeley

ihh@berkeley.edu

ABSTRACT
The structure of a choice-driven interactive story can be
modeled as a syntax tree, generated by a player from a
grammar, which in turn was generated by a game author.
Using this grammar metaphor, “Boswell”, a web-based Inte-
grated Development Environment, was developed for writ-
ing, testing, playing and sharing choice-based interactive
fiction scripts. The system includes a domain-specific lan-
guage, a map overview, a parse-tree debugger, and a network
client for multiplayer games.

1. INTRODUCTION
Choice-based interactive fiction came of age in the 1980’s:
Choose Your Own Adventure[1], Fighting Fantasy[2], and
Lone Wolf[3] are well-known series. The genre has seen
an early 21st-century resurgence with the advent of writing
tools—from domain-specific languages like ChoiceScript[4],
to interactive editors like Twine[5] and Inklewriter[6]—which
have lowered the barriers to game creation and increased the
diversity of authorial voices.

A simple choice-based story can be compared to a flowchart,
or a state machine, or (in the language of grammar theory)
a regular grammar. The main control-flow construct is the
optional GOTO statement (“IF you choose to take the chalice,
TURN TO page 400”). The structure of the story is a linear
progression of scenes: the game program is a finite state
machine that outputs scenes in a player-driven sequence.

In modeling many kinds of text, it is often useful to allow a
richer structure. For example, conversations often make di-
versions (sometimes nested diversions (and sometimes mul-
tiply nested)) before returning to the main theme. Epic
adventures can include side-quests; stories often have epi-
logues.

This sort of structure can be modeled using a context-free
grammar (CFG). If a typical choice-based story (with a regu-
lar grammar) is akin to a state machine, whose main control-

flow construct is GOTO, then a CFG-based story is like a
pushdown automaton (a finite-state machine with a stack)
which allows not only GOTO but also GOSUB.

In this abstract we describe Boswell, a software system that
allows authoring of story CFGs via an interface inspired by
graphical editors like Twine and domain-specific languages
like ChoiceScript. The created games can be played over the
web by multiple players in different locations.

To extend choice-based stories in this way might indicate an
excessive fondness for formalism. However, a well-defined
framework provides a robust foundation, as well as a rich
variety of links to other areas of culture. Grammars have
variously served as metaphysical systems[7, 8], tools of so-
cial unification and control[9, 10], and models of natural
language[11]. They have been used in compiler theory[12],
DNA sequence analysis[11], and computer graphics[13]. There
is a literature on game-theoretic analysis of grammar-based
games [14]. Templates and scripts for social interactions
have a rich history in popular social psychology[15, 16]. All
of the above influences offer a source of inspiration for single-
and multiplayer game design.

2. DESIGN
2.1 Game language
The application is based around a declarative, domain-specific
language for specifying an attributed CFG.

The core element in this grammar, syntactically and seman-
tically, is the transformation rule, which specifies how scenes
connect. A scene label is preceded by the “@” character; for
example, “@mailbox”. A transformation rule specifies what
happens next:

@mailbox => { Open the mailbox.

=> In the mail is a big check! @going_down }

In this, “@mailbox” is a label denoting the current scene;
“Open the mailbox” is hint text presented to the player as a
choice; and“You open the mail. Inside is a big check!”
is the expansion text generated if the player makes this choice.
Note that the expansion text includes another scene label,
“@going_down”, which in turn will be expanded to generate
the next scene.

In the above example, the curly braces include just a single

“hint => expansion” choice. More generally, there can be
a list of several choices, separated by “|” characters:

@going_up =>

{ Check the mail

=> You go to the mailbox. @mailbox

| Check the paper

=> You inherited a fortune! @going_down

| Buy a lottery ticket

=> You won the lottery! @going_down }

This block has three “hint => expansion” pairs; any num-
ber is allowed.

An optional longer form allows for additional text fields to
be expanded as part of the scene:

@going_down =>

[So, now you are rich. | Wonderful! | What next?]

{ Buy a fast car =>

You buy a car.

The medical bills from the crash bankrupt you.

@going_up

| Invest in stocks =>

You invest in the market.

The collapse nullifies all your gains.

@going_up

| Buy a beach house =>

You buy some seafront property.

Global warming turns it into sea-bed property.

@swim }

Here, “So, now you are rich” is the preamble text that will
appear permanently at the beginning of the scene; “Wonderful!”
is the placeholder text temporarily displayed at the bottom
of the scene (before the list of choices), and deleted when an
expansion is selected; and “What next?” is the prompt text,
also transiently displayed, that is associated with the list of
choices.

An expansion can contain multiple scene labels, or none:

@swim =>

[How will you escape a watery grave?]

{ Swim => You swim for a while. @swim

| Call for help => @call_for_help;

You are quickly rescued. @going_up }

@call_for_help =>

[How will you call for help?]

{ Scream => You scream. | Sing => You sing. }

In the terminology of formal grammar theory: the scene la-
bels (@going_up, @going_down, @swim, @mailbox, etc.) which
appear before the first“=>”sign and also (sometimes) flanked
by text in the expansions, are nonterminal symbols. Each
expansion is a mixture of terminal symbols (ordinary ren-
dered text, consisting of HTML tags and ASCII characters)
and nonterminal symbols.

Nonterminal symbols denote points in the text (scenes) where
further expansion is possible; terminal symbols denote static

endpoints of the text. The preamble, placeholder, prompt
and hint are attributes added to make the grammar formal-
ism a little more friendly to writing interactive stories.

All nonterminal symbols begin with @. Special characters
such as $@[]{} can be escaped with a backslash if required
in the text. Quotation marks and other common punctua-
tion are not special characters and can be used directly, as
can HTML tags. Some syntactic sugar for HTML tags (e.g.
flanking underscores for italics) is borrowed from Markdown
[17].

By default, the starting nonterminal is named @start:

@start => [Are you ready?] { @going_up }

Starting from this designated initial nonterminal, iterated
application of the transformation rules generates a parse tree
(Figure 1, right), with nonterminal symbols at internal nodes
and terminal symbols at the tips. The final text can be read
off from the terminals at the leaf nodes (Figure 1, left).

The sequence of terminals is post-processed before being ren-
dered, so the terminals themselves do not necessarily corre-
spond exactly to what is shown on screen. Specifically, the
terminal nodes at the leaves of the parse tree represent a
program text, which can contain embedded commands (such
as variable assignments, inputs, modification, and interpo-
lation) that are then interpreted to (deterministically) com-
pute the story text presented to the player. As noted above,
a Markdown-like macro expansion is further applied to the
generated story text, for quick HTML styling [17].

Extra keywords are available; for example, to specify that
some variables are directly controlled by the player, (using
sliders), or to delineate a variable as the score. Other key-
words can specify the game title, or control the behavior of
the “undo” button.

Not all transformation rules need be presented to the player
at every opportunity. The author can flag individual rules to
be hidden from view some fixed number of times before first
being shown, or limited to some finite number of uses. Var-
ious modifier keywords can be associated with nonterminals
to indicate this in the game source file.

More computationally expressive logic for controlling story
flow is available via the use of computer players. For non-
terminals that are flagged as belonging to the computer
player, rules are normally played at random, but this be-
havior can be manipulated by the author to assign different
probabilistic weights to the rules (and these weights can also
be boolean logic expressions, allowing for more sophisticated
control of flow). The player can also “steer” the computer
player by manipulating probabilistic weight parameters di-
rectly, by means of slider controls that the game designer
can embed in the HTML page.

2.2 Editor
At the most basic level, the editor includes a textbox for
direct editing of game source code. Beyond this, a number

Figure 1: The parse tree visualization (right) can help analyze and debug narrative play (left). Here, the
currently active choice node (right) is highlighted in the text (left).

Figure 2: The nonterminal editor pane allows drag-
and-drop ordering and editing of menus.

of User Interface (UI) elements are presented together as a
basic Integrated Development Environment (IDE).

The main element is a drag-and-drop (“sortable”) list of non-
terminal editor panes (Figure 2). Each nonterminal editor
pane contains a sortable list of transformation rules, together
with UI elements for modifying rule behavior (e.g. the num-
ber of times a rule can be used by, or should be hidden from,
the player). An overview summarizes orphan nonterminals
(never generated by any rules), bare nonterminals (no text),
and empty rules (loose ends). Hyperlinks are provided for
quick navigation to incoming/outgoing nonterminals, and
also to the map view.

Another sortable list specifies the parameters that the player
can set directly via slider controls. Some properties of the
grammar (e.g. its title) can be directly edited.

2.3 Map
The map, rendered using a third-party graph visualization
library, shows the overall structure of the game (Figure 3).

Figure 3: The map provides an overview of connec-
tions between nonterminals.

Nodes represent nonterminals (arranged in a circular lay-
out). Edges a → b imply the existence of at least one rule
a → . . . b . . . with a on the left-hand side and b on the right.

Nodes are colored to represent some useful information (e.g.
whether the corresponding nonterminal is human- or player-
controlled, whether it is a loose end, and so forth). The
author can mouse-over a node to highlight incoming & out-
going edges.

2.4 Parse tree debugger
The parse tree is rendered using the same graph library as
the map (Figure 1, right). The various types and status
of nodes (terminals; expanded & unexpanded nonterminals
(player- and computer-controlled); parameter references, as-
signments & inputs) is indicated via size and coloring. The
tester can mouseover nodes to highlight expanded text or see
order and time of expansion. Clicking on a node navigates
to the corresponding nonterminal editor pane.

2.5 Game client
The parse tree is rendered as text after performing variable
substitutions (Figure 1, left). Minimal styling is used to
present choice lists and animate key events, e.g. fading-in of
newly-rendered text.

An “undo” button with gradually-increasing recharge time is
offered as an optional game mechanic for solo play. (Limiting
this to solo play avoids the complications of implementing
multiplayer “undo”.)

2.6 Multiplayer operation

Multiplayer mode is enabled by increasing the number of
roles in the grammar from its default value of 1. The num-
ber of roles is the same as the number of (human) play-
ers. Each nonterminal node in the parse tree is controlled
(i.e. can only be expanded) by the player in one specific
role. This prevents race conditions by design: each choice is
uniquely controlled by one player. The @start nonterminal
at the root node is always controlled by the player in the
first role. By default, if node X is controlled by role n and
there are k roles, then all children of node X are controlled
by role ((n + 1) mod k). Thus, control passes predictably
from one player to the next, although this default behavior
can be modified by the author (e.g. to indicate that a par-
ticular nonterminal should always be controlled by a given
role). For every role, there is one human player (for manual
choices) and one computer player (for automatic choices).

Multiplayer mode is implemented using a third-party publish-
subscribe (pub-sub) framework. Games are organized on an
invitation channel and then take place on an hierarchically-
structured set of play channels, with one channel for each
node of the parse tree. CSS animations report (a) publi-
cation of rules to the pub-sub server (for locally-controlled
node expansions), (b) subscription of a listener at a partic-
ular point in the parse tree (for remotely-controlled nodes).

3. DISCUSSION
Grammars are found throughout computer science, and there
are many potential applications of an integrated system for
designing grammars and then using them collaboratively to
generate texts over a network. Such applications range from
serious uses in IT enterprise (e.g. structured chat-rooms
for product support), through traditional game tropes (e.g.
dungeonmaster-player conversations), through new electronic
models of social interaction (e.g. scripted interactive dates).

3.1 Cryptographic signatures
Cryptographically-authenticated play would obviate the need
for a server or central scoring authority. A cryptographic
extension of the basic pub-sub model should be straightfor-
ward. Crucial messages must be signed (and counter-signed
when received): these include invitations, applications to
join the game, and rule expansions.

3.2 Strategic optimality
Strategically optimal algorithms for playing this kind of game
are known to exist when the scoring scheme is a trivial func-
tion of the parse tree (e.g. fixed rewards for using certain
nonterminals [14]). However, the scoring scheme described
here is considerably more flexible, modeling many aspects of
context-sensitive grammars as well as CFGs.

The programming language for the computer player does not
attempt to model AI in any deep sense: it is very simple, just
offering variables, conditional tests, and the in-built facility
for looping and recursion that comes for free with the CFG.

A possible extension is to use an ambiguous grammar (mul-
tiple parse trees consistent with observed output) with a
computer player that predicts future outcomes probabilisti-
cally (e.g. using Earley-Stolcke parsing [18]).

4. IMPLEMENTATION
Implemented in JavaScript using SigmaJS, PegJS, JQuery,
OpenPGP, Node, and Faye, with CSS from ChoiceScript.
Tested in Google Chrome and Mozilla Firefox.

4.1 Availability
Code is freely available at https://github.com/ihh/boswell

4.2 Acknowledgements
Many thanks are due Dan Fabulich, Richard Evans, Michael
Mateas, Noah Wardrip-Fruin, Emily Short, Graham Nelson,
Jon Ingold, and Rudy Rucker for help and inspiration.

5. REFERENCES
[1] E. Packard. The Cave of Time. Choose Your Own

Adventure. Bantam Books, 1979.

[2] S. Jackson, I. Livingstone, and R. Nicholson. The
Warlock of Firetop Mountain. Fighting Fantasy
gamebooks. Puffin Books, 1982.

[3] J. Dever. Flight From The Dark. Lone Wolf. Sparrow,
1984.

[4] D. Fabulich. Introduction to ChoiceScript.
http://www.choiceofgames.com/.

[5] C. Klimas. Twine: an Open-Source Tool for Telling
Interactive, Nonlinear Stories. http://twinery.org/.

[6] J. Ingold. Inklewriter.
http://www.inklestudios.com/inklewriter.

[7] Pān. ini. Ashtadhyayi, 4th Century B.C.E.
http://en.wikipedia.org/wiki/Ashtadhyayi.

[8] A. Luhtala. Grammar and Philosophy in Late
Antiquity: A Study of Priscian’s Sources. John
Benjamins Pub., 2005.

[9] Académie Française. L’histoire, 2013.
http://www.academie-francaise.fr/linstitution/lhistoire.

[10] R. Lowth. A Short Introduction to English Grammar:
With Critical Notes. J.J. Tourneisin, 1794.

[11] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison.
Biological Sequence Analysis: Probabilistic Models of
Proteins and Nucleic Acids. Cambridge University
Press, Cambridge, UK, 1998.

[12] A.V. Aho, M.S. Lam, R. Sethi, and J. Ullman.
Compilers: Principles, Techniques, and Tools.
Addison-Wesley Educational Publishers Inc., 2007.

[13] G. Rozenberg and A. Salomaa. The Mathematical
Theory of L Systems. Pure and Applied Mathematics.
Elsevier Science, 1980.

[14] K. Etessami, D. Wojtczak, and M. Yannakakis.
Recursive stochastic games with positive rewards. In
L. Aceto, I. Damg̊ard, L.A. Goldberg, M.M.
Halldórsson, A. Ingólfsdóttir, and I. Walukiewicz,
editors, ICALP (1), volume 5125 of Lecture Notes in
Computer Science, pages 711–723. Springer, 2008.

[15] E. Berne. Games People Play: The Psychology of
Human Relationships. Grove Press, 1964.

[16] E. Berne. What Do You Say After You Say Hello?
Grove Press, 1972.

[17] J. Gruber. Markdown.
http://daringfireball.net/projects/markdown/.

[18] A. Stolcke. An efficient probabilistic context-free
parsing algorithm that computes prefix probabilities.
Comput. Linguist., 21(2):165–201, June 1995.

